Search results for "Gravitational acceleration"
showing 6 items of 6 documents
Accumulation of positrons from a LINAC based source
2020
International audience; The GBAR experiment aims to measure the gravitational acceleration of antihydrogen H̅. It will use H̅+ ions formed by the interaction of antiprotons with a dense positronium cloud, which will require about 1010 positrons to produce one H̅+. We present the first results on the positron accumulation, reaching 3.8±0.4×108 e+ collected in 560 s.
A novel cooling scheme for antiprotons
2006
We propose a novel technique which uses laser-cooled negative osmium ions for sympathetic cooling of antiprotons. Temperatures down to the sub-millikelvin range might be achievable. These antiprotons could be used to form antihydrogen at ultra-cold temperatures, thus allowing efficient magnetic trapping of antihydrogen for high-resolution laser spectroscopy. Antihydrogen at sub-millikelvin temperatures might also enable first direct measurements of the gravitational acceleration of antimatter. Currently, no other technique exists which allows the cooling of large numbers of antiprotons to temperatures below that of the surrounding trap.
Computational Approach to Gravitational Waves Forms in Stellar Systems as Complex Structures through Keplerian Parameters
2009
In this paper we investigate the gravitational waves emission by stellar dynamical structures as complex systems in the quadrupole approximation considering bounded and unbounded orbits. Precisely, after deriving analytical expressions for the gravitational wave luminosity, the total energy output and gravitational radiation amplitude, we present a computational approach to evaluate the gravitational wave-forms from elliptical, circular, parabolic and hyperbolic orbits as a function of Keplerian parameters.
Cosmological waveguides for gravitational waves
1997
We study the linearized equations describing the propagation of gravitational waves through dust. In the leading order of the WKB approximation, dust behaves as a non-dispersive, non-dissipative medium. Taking advantage of these features, we explore the possibility that a gravitational wave from a distant source gets trapped by the gravitational field of a long filament of galaxies of the kind seen in the large scale structure of the Universe. Such a waveguiding effect may lead to a huge magnification of the radiation from distant sources, thus lowering the sensitivity required for a successful detection of gravitational waves by detectors like VIRGO, LIGO and LISA.
Gravitational waves from first order phase transitions as a probe of an early matter domination era and its inverse problem
2016
We investigate the gravitational wave background from a first order phase transition in a matter-dominated universe, and show that it has a unique feature from which important information about the properties of the phase transition and thermal history of the universe can be easily extracted. Also, we discuss the inverse problem of such a gravitational wave background in view of the degeneracy among macroscopic parameters governing the signal.
Effect of pseudo-gravitational acceleration on the dissolution rate of miscible drops
2017
The effect of pseudo-gravitational acceleration on the dissolution process of two phase miscible systems has been investigated at high acceleration values using a spinning drop tensiometer with three systems: 1-butanol/water, isobutyric acid/water, and triethylamine/water. We concluded that the dissolution process involves at least three different transport phenomena: diffusion, barodiffusion, and gravitational (buoyancy-driven) convection. The last two phenomena are significantly affected by the centrifugal acceleration acting at the interface between the two fluids, and the coupling with the geometry of the dissolving drop leads to a change of the mass flux during the course of the dissol…